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Abstract. Multidimensional cosmology typically uses the following geometry: ds2=gµνdxµdxν+e2φhmndymdyn. This position does

not come from primary principles: rather it must be considered as a generalization of the Friedmann metric. Besides, cosmologies

inspired by unification models often do not allow geometries of this kind without losing stability. In the present work, we discuss

about different metric beginning with the hypothesis that the ordinary space-time can be locally regarded as a pseudo-Riemannian

hypersurface isometrically embedded in Mn. Furthermore, we demonstrate that this geometry is capable to resolve, in a simple way,

the non-linear multidimensional Einstein-Gauss-Bonnet model. Finally, we show how said geometry can contribute to the

establishing of the cosmological extended principle needed to understand the nature of a multidimensional universe.

Introduction. Cosmological models are derived from

Einstein equations through the geometrical hypothesis

contained in the Cosmological Principle[1]. On the

contrary, multidimensional models, tipically inspired from

unification theories, are derived from dimensionally

extended Einstein equations after using a generalization of

the Friedmann metric[2÷12]: this, assuming a block-diagonal

form, gives to the internal space a scale factor depending

from the external coordinates.

Practically, there are not strong geometric foundations

or a cosmological extended principle able to support this

metric ansatz: obviously this position would find a later

justification should it be able in a position to attain the

desired cosmological solutions.

However, in linear models Kasner-type solutions[13,15]

exist able to anisotropize by cosmological evolution the

multidimensional space confining the internal space to

distances of the Planck length order. These solutions can

turn out to be definitively stable if matter contributions are

considered[3,4,7,14,15,17]. Unfortunately, stability does not

seem possible if the gravitational lagrangian contains the

non-linear Gauss-Bonnet term[12]: on the other hand, said

term is present in the promising unification theories

obtained from the superstrings heterotic model[18,19,21,31,36].

It is worth mentioning that the generalization of the

Friedmann metric is historically linked to the Kaluza-

Klein unification theories[22÷28]: in these theories, the off-

diagonal elements of the multidimensional metric tensor

generate, through the isometries of the internal space, the

desired non-abelian gauge fields. In this way, the

multidimensional metric turns out to be block-diagonal if

vacuum models are considered, which means, in other

words, that the vacuum expectation value takes the place

of the gauge potentials. This allows to regard the

multidimensional space-time as a direct product of two

subspaces and therefore to consistently use the

generalization of the Friedmann metric. This approach to

unification is valid in supergravity theories[23,27,28,29] where

it is the multidimensional metric tensor that produces the

gauge fields[16,29]; on the contrary, in non-linear 10-

dimensional cosmologies inspired to the superstrings

heterotic model the gauge fields are automatically present:

in fact these fields are, as the graviton, other bosonic

massless states of the 10-dimensional heterotic

superstring[18,28,30,31,36]. So, in this case, it is not enough

clear how and through which hypotesis it is possible to

support the idea of a 10-dimensional universe given by a

direct product of two subspaces.

The present work is dedicated to the investigation of the

geometric hypotesis relating to a universe presumably

multidimensional, trying to express an extended

cosmological principle. The work is organized as follows:

in the next section the form of the multidimensional

metric, rather than assumed, is obtained; further

examination is than given to the comparison between this

obtained metric and the generalized Friedmann metric. In

the following section this metric is used to solve the non-

linear Einstein-Gauss-Bonnet model. Finally, in the last

section, the embedding geometry is inductively used to try

to express an extended cosmological principle that, though

containing the traditional Cosmological Principle, turns

out to be consistent with the hypotesis relating to the

multidimensionality of the universe.

The geometry.   Let S4 be the ordinary space-time and

gµν be its metric: if we assume that the universe got a

multidimensional structure, we can locally consider S4 as

an ipersurface isometrically embedded in a n-dimensional

Minkowski space-time. The choice of Mn is essentially

due to the fact that the embedding in a flat space-time is
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quite simple[32]; moreover, the unification models which

we refer to, assume Mn as the ground state[28]. As we will

see, this choice does not provide trivial results; on the

contrary, it allows a generalization of tangent space to S4.

The embedding is then realized when a point of S4, with

coordinates xλ (..,λ,..=0,..,3), can be described in Mn by a set

of cartesian coordinates UL(x) (..,L,..=0,..,n-1). So, the

isometric condition assumes the following form:

gµν=ηMNUM,µUN,ν (1)

where ηMN is the metric of Mn; the vectors U,λ of the

tangent plane to S4 act as generalized vierbeins[33].

General theorems for the local embedding of S4 in Mn

establish some relations between the properties of the

functions UL(x) and the dimensions of Mn
[32]. In particular,

if the dimension of Mn are ten, the functions UL(x) exist

and they turn out to be analytic[32,34]. So, the embedding

for the 10-dimensional heterotic model guarantees very

strong proprieties for the functions UL(x).

In the neighbourhood of the embedding point xλ∈S4, we

then construct n-4 vectors Nm(x) (..,m,..=4,..,n-1), with

cartesian coordinates Nm
L, orthogonal to each other and to

S4. The following relations will hold:

ηLMNm
LNn

M=gmn  ;   ηLMNm
LUM

,µ=0 (2)

where gmn locally represents the metric of the internal

space.

Let us now consider a point zL of Mn which does not

necessarily belong to S4: its embedding coordinates can be

expressed by:

zL=UL(x)+ymNm
L(x) (3)

The n-4 parameters ym so introduced are of such kind that

the previous expression represents in Mn the local relation

that allows to move from the coordinates system {zL} to

the system {xλ,yl} in which S4 is defined by the condition

yl=0. In the following discussions we will assume yl as

periodic coordinates.

Now we are in the position to write down the

multidimensional metric[34]: from ds(n)
2=ηMNdzMdzN and

with the help of (1), (2) and (3), we obtain

ds(n)
2=gµνdxµdxν+gmndymdyn+

      +ηLM[2Nm
Ldym+(2UL+ymNm

L),µdxµ]ynNn
M

,νdxν (4)

This expression can be simplified by focusing our

attention on an internal space not depending from the

external coordinates unless with respect to a scale factor:

so, assuming

Nm
L(x)=eφ(x)Qm

L (5)

we obtain

ds(n)
2=gµνdxµdxν+e2φhmndymdyn+

+e2φhmn[ymφ,µdxµ+2dym]ynφ,νdxν (6)

where hmn=Qm
MQn

NηMN is the metric tensor of the internal

space not depending from the coordinates xλof the

embedding point. Introducing now the scaling coordinates

Yl=eφyl it turns out to be possible to reconsider (6) in the

more compact form

ds(n)
2=gµνdxµdxν+hmndYmdYn (6')

The hypothesis (5) allows to come closer to the

geometric position contained in the above-mentioned

generalization of the Friedmann metric and this permits us

to make an immediate comparison: named g
(im.)

MN and

g
(Fr.)

MN as, respectively, the multidimensional embedding

metric tensor defined by (6) and the Friedmann metric, we

have

g
(im.)

MN=g
(Fr.)

MN+e2φg'MN (7)

where the g'MN blocks are given by

g'µν=hmnymynφ,µφ,ν ;    g'mµ=hmnynφ,µ ;    g'mn=0 . (8)

Thus, the two metrics differ for the terms in (8) that

explicitly depend from the internal coordinates and from

the first derivatives of the scale field of the internal space.

This means that the Friedmann metric is equal to the

embedding metric only for an observer located in S4 or, in

general, when the scale of the internal space turns out to

be constant. In any case, not the real multidimensional

geometry but only the observable geometry on the S4

hypersurface is exactly of the Friedmann type.

From the variational principle δ∫ds(n)=0 let us now

obtain the geodesic equations relating to the metric (6).

Said equations take the following form:

(duλ/ds(n))+Γλµνuµuν+½φ,λhmn,ryrVmVn=0 (9)

(dVl/ds(n))+Γl
mnVmVn–φ,µhlphpm,nynuµVm=0 (9')

where uλ=dxλ/ds(n), V
l=dYl/ds(n) and the ΓL

MN are the usual

affine connections. On the contrary, making use of the

generalized Fridmann metric we obtain the equations[11]

(duλ/ds(n))+Γλµνuµuν–e2φφ,λhmnvmvn=0 (10)

(dvl/ds(n))+Γl
mnvmvn+2φ,µuµvl=0 (10')

where vl=dyl/ds(n).

Comparing the expressions (9) and (9') with (10) and (10')

it follows that these equations differ, to first order in y, for

a term proportional to 2hmn+hmn,ryr. This term turns out to

be the Lie derivative of hmn with respect to the scale

transformation ym→eεym: the latter is not an isometry for

the internal space so the previous term cannot be zero.

The most delicate problem of the above scheme consists

in the choice of hmn. If we consider, for example, a flat

internal space, the equations (9) and (9') are not influenced

by the behaviour of the scale field of the internal space: it

means that whichever multidimensional model we may

consider, the fields equations trivially take back the form

of the classic quadridimensional case, so to lose any
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possibility to follow the dynamic evolution of the

extradimensional sector of the universe. On the other

hand, the unification model to which this work is aimed

provides an internal space of the Kalabi-Yau type[28,30,35]

for which hmnRmanb=0 but Rmanb≠0; by electing this choice

the equations (9) and (9') do not generate trivial models:

this permits to the equations of the gMN field to describe, in

addition to the dynamic of gµν, also the dynamic of the φ
field.

Before ending this section, let us show the components

of the Riemann tensor; making use of (9) and (9') we

obtain:

Rαβγδ=R(4)αβγδ ;  Rabcd=R(D)abcd ;  Rαβab=0 ;

Rµabc=½φ,µha[c,b] ;  Rmαβγ=0 ;  Rαaβb=Oαaβb(y×∇φ)

where D=n-4 and the last components explicitly depend on

the internal coordinates.

The model. Let us consider the lagrangian density:

L = –R+ψ–1(FABFAB–L
(G.B.)

)+2ψ–2(ψ,Mψ,M) (11)

In this expression, any quantity is defined in a 10-

dimensional space-time: R is the scalar curvature, ψ the

dilaton and L
(G.B.)

=R2–4RABRAB+RABCDRABCD the Gauss-

Bonnet term; moreover FAB describes the gauge field. All

constants have been eliminated by an appropriate

redefinition of the ψ field and the L density. The (11)

comes from the bosonic sector of the superstrings

heterotic model[21,36]. The quadratic Gauss-Bonnet term,

which is present for supersimmetry reasons[37,38], does not

introduce anomaly in the gravitational propagator[19].

Moreover, it turns out to be consistent with the

multidimensional generalization of the gravitational

lagrangian density[20,39].

Einstein-Gauss-Bonnet cosmological models have been

taken into consideration by several authors[2,8,9,11,12,38,40÷44].

These models, unlike the linear case[45], does not provide

generally stable solutions for the system[11,12] and this fact

has brought someone to criticize the presence of the

Gauss-Bonnet term[12]; in practical, this models introduce

the geometric scale field interacting with gravity through

the generalization of the Friedmann metric, which does

not seem to be supported, as above pointed out, by strong

principles. Therefore, it is not clear why we are not to be

doubtful about the metric ansatz, rather than the quadratic

term; the latter, on the contrary, with respect to unification

theories, is supported by strong arguments.

As far as we are concerned, the present work lies on

these conjectures.

Let us obtain the field equations from the variational

principle δ∫(L+L
(m)

)(-g)½d10z=0. In this expression we have

introduced the L
(m)

 term that takes into account for the

eventual presence of a matter fluid. So we have:

GMN=T
(m)

MN+2ψ–2ψ,Mψ,N–ψ–2(ψ,Lψ,L)gMN+

    +ψ–1(2FMLFL
N–½F2gMN+T

(G.B.)
MN)+OMN(R×∇ψ) (12)

ψ;L
L–ψ–1ψ,Lψ,L=¼(L

(G.B.)
–F2) (13)

FAB
;B=0 (14)

where, in (12), the OMN term contains products beetwen the

curvature and the dilaton derivatives and where

T
(G.B.)

MN=½gMNL
(G.B.)

–2RRMN+4RMLRL
N+4RABRMANB–2RMABCRN

ABC.

Let us now consider, in this short exposition, the case in

which ψ–1=α=const[2,8,9,11,12,38,40÷43]. Besides, let us choose

to embed the gauge field in the internal space making

use[9,35,41,44] of FAα=0 and FabFab=RabcdRabcd. Introducing in

(12) the embedding metric given by (6) and choosing for

the stress-energy tensor of the matter field the diagonal

expression T
(m)

M
N=diag{ρ,..-pe .,..-pi .}, we obtain the

equations:

Gµν=T
(m)

µν+½αω2(φ,λφ,λgµν–φ,µφ,ν)+Oµν(y2×∇φ) (15)

½αω2φ,λφ,λ+(R4+αL4

(G.B.)
)=2pi (16)

where Gµν, R4, L4

(G.B.)
 are, respectively, the Einstein tensor,

the scalar curvature and the Gauss-Bonnet term related to

the gµν metric of S4. The Oµν term of (15) esplicitly

depends from quantities which can be neglected in a low

energy model and, anyhow, it will be exacly equal to zero

on the S4 hypersurface.

In (15) and (16) a mass parameter ω2=(ha[b,c])2 appears:

it does not seem possible to develop it, since any explicit

expression for the metric tensor of a Kalabi-Yau space it

is still unknown. However, it turns out to be different from

zero because of the antisimmetry properties of Riemann

tensor indices. In the following discussion, after

expanding this quantity in harmonic series on the ym, we

will choose to absorb the zero order term (ω0
2) in the

definition of the scale field in the assumption that this

position does not change the qualitative behavior of the

model.

Let us now have the ordinary space-time geometry

consistent with the Cosmological Principle and the scale

field spatially omogeneous:

ds(4)
2=gµνdxµdxν=dt2–a2(t)ds(3)

2 (17)

φ=φ(t) (17')

In (17) we will also suppose ds(3)
2=Σdx2. Introducting

these hypotesis in (15) and (16) the following equations

are obtained:

3H2=ρ (18)

αϕ& 2=3[ H& +(γi+2)H2]–12αH2( H& +H2) (19)

where H= a& /a and ϕ=½ω0φ. To them the conservation

equation T0
λ

;λ=0 must be added:

ρ& +3(γe+1)Hρ=6Hαϕ& 2

(20)
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In the previous relations we made explicit reference to the

equations of state pi=γiρ e pe=γeρ.

Defining, as a matter of convenience, γ=(3–γe+2γi)/8α,

the differential equation for H(t) assumes the form:

12H[ H& –6αH2( H& +H2–γ)]=0 (21)

The previous equation admits, as fundamental solution,

the Minkowski space-time for which it turns out to be:

a=a0, ρ=0 and φ=φ0. Besides, (21) provides for a further

solution simply obtained in the inverse form t=t(H). Said

solution turns out to be of particular cosmological interest

if we assume that the state parameters, reasonably, satisfy

the relation γe–2γi<5/3. We have:

H

H

H
tt

−

+
++=

2/1

2/1

00 ln
6

1

γ
γ

γ
αγ

(22)

where γ0=(6αγ–1)/12αγ 
3/2 turns out to be, for the choice

on the state parameters, a quantity always positive. The

qualitative graphic of (22) is showed as follows.

H=H(t)

H
H0

crit.

de Sitter

Minkowski

Consequently, the model admits two different asyntotic

solutions which control the H(t) evolution when its initial

value Hin is known: defining Hcrit.=(6α)-1/2 it happens that,

if Hin<Hcrit., then H→0 (Minkowski) while, if Hin>Hcrit., we

have H→H0=γ 
1/2 (de Sitter). It is worth mentioning that

Hcrit. does not depend from state parameters.

When H<<γ 
1/2, the (22) can be immediately inverted so

to obtain H=[6αγt]  
–1 that is a=a0t 

4/3(3–γe+2γi): when the

ordinary space is radiation dominated (γe=1/3) and the

internal space is empty (γi=0) the typical cosmological

solutions a=a0t 
1/2 and ρ=ρ0t 

–2 are obtained. During this

phase, the behaviour of the scale field of the internal space

is controlled by the following equation:

 

2
2 12 







−=
a

a

a

a &&&
&ϕ

The second member is always positive and it goes to zero

as t 
–4 so that |φ–φ0|∼t 

–1.

The behaviour of the scale field near the de Sitter phase

turns out to be given by |φ–φ0|∼e 
−t/2γ

0 if we assume, as

usual for an inflationary phase, γe=−1.

What we have discussed before it has to be considered

as a toy model: in our system, in fact, we have assumed a

strictly constant configuration for the dilaton ψ excluding,

as a matter of fact, the possibility that the two scalar fields 

φ and ψ could reach together their final configuration.

Besides, the righthand side of (12) makes plausible the

hypotesis that it is the dilaton dynamic which controls the

inflationary phase of the universe[41]. Moreover, this fact

turns out to be more evident if we observe that Hcrit. and

H0 depend from α=ψ 
–1. The study of the dilaton dynamic

will be the object of further researches. In the present

work, we wished to solve the non-linear Einstein-Gauss-

Bonnet cosmological model without using any ansatz on

the geometry but making use of the embedding metric: the

obtained results, we believe, give enough credit to this

geometric outline.

Conclusions. In the previous section we have seen how

the embedding metric given by (6) is able to solve the

non-linear Einstein-Gauss-Bonnet cosmological model.

The geometry of the multidimensional universe admits a

vacuum configuration given by the direct product M4×K6.

Moreover, for low energy observers the multidimensional

universe appears in any case as a topological structure

given by a direct product of two subspaces. Finally, in the

presence of a matter fluid, the model generates the

cosmological solutions tipically contained in the standard

4-dimensional theory.

The embedding geometry, generally given by the

equation (4), seems to reflect a cosmological principle if it

is characterized by the hypotesis (5), (17) and (17'): thus,

in the following discussion we will try to make the

preceding assertion plausible.

As it is known[1], the Cosmological Principle states that

the universe is homogeneous and isotropic and this

represents a statement about the existence of equivalent

coordinates systems. Consistently with the spirit of

General Relativity, this corresponds to state that through

each event of the space-time there passes a tridimensional

spacelike hypersurface on which the density and the

curvature turn out to be constant and that the world lines

of the cosmological fluid are orthogonal to said

hypersurface[46]. This principle, although not containing by

itself any denial about the existence of a multidimensional

structure of the universe, can be regarded as the geometric

principle related to the actually observable sector of the

universe. In this way, the ordinary universe must be

embedded in the multidimensional one and said

embedding must locally characterize an internal geometric

structure. The geometric hypotesis contained in (5), (6),

(17) and (17') thus affirm that each event of the ordinary

space-time locates a spacelike hypersurface of
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homogeneity and isotropy embedded in a

multidimensional space-time and defined in such way that

even the scale field of the internal space turns out to be

homogeneous on it. Moreover, the topological structure

of the internal space is homogeneus on each hypersurface

and globally invariant on all the family of the

tridimensional hypersurfaces that describe the evolution

of the universe.
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